By Topic

Ultra-wide-band synthetic-aperture radar for mine-field detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
L. Carin ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; N. Geng ; M. McClure ; J. Sichina
more authors

A full-wave model is developed for electromagnetic scattering from buried and surface land mines (both conducting and plastic), taking rigorous account of the lossy, dispersive, and potentially layered properties of soil. The (polarimetric) theoretical results are confirmed via synthetic-aperture radar (SAR) measurements, performed using the US Army Research Laboratory's BoomSAR, with which fully polarimetric ultra-wide-band (50-1200 MHz) SAR imagery is produced. The SAR system is used to acquire a large database of imagery, including a significant distribution of naturally occurring clutter. Several techniques are used for mine detection with such data, including several detectors that are based on target features gleaned from the modeling, as well as a matched-filter-like detector that directly incorporates the target signatures themselves. In addition, the theoretical model is used to predict wave phenomenology in various environments (beyond the limited range of parameters that can be examined experimentally). Since the efficacy of radar-based subsurface sensing depends strongly on the soil properties, we perform a parametric study of the dependence of such on the target RCS, and on possible landmine resonances

Published in:

IEEE Antennas and Propagation Magazine  (Volume:41 ,  Issue: 1 )