By Topic

Fast static compaction algorithms for sequential circuit test vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsiao, M.S. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Rudnick, E.M. ; Patel, J.H.

Two fast algorithms for static test sequence compaction are proposed for sequential circuits. The algorithms are based on the observation that test sequences traverse through a small set of states and some states are frequently revisited throughout the application of a test set. Subsequences that start and end on the same states may be removed if necessary and if sufficient conditions are met for them. Contrary to the previously proposed methods, where multitudes of fault simulations are required, the techniques described in this paper require only two fault simulation passes and are applied to test sequences generated by various test generators, resulting in significant compactions very quickly for circuits that have many revisited states

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 3 )