By Topic

Computations for radiation and surface-wave losses in coplanar waveguide bandpass filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fang-Lih Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wu, Ruey-Beei

A new approach is developed to simulate both radiation and surface-wave losses in general coplanar waveguide (CPW) discontinuity structures. The newly derived formulas are concise, simple, and efficient for computation. Full-wave characterization of CPW filter structures are first accomplished by the mixed-potential integral equation and the method of moments. Given equivalent magnetic-current distributions on the apertures of a CPW, the matrix pencil approach is applied to extract the scattering parameters and the new formulas are employed to obtain the losses and far-field patterns of the space-wave radiation and surface wave. Simulation of the calculated radiation and surface-wave losses by field theory is found to be consistent to the total power loss determined from the scattering parameters by circuit theory, which verifies the correctness of our new expressions

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 4 )