By Topic

High-frequency distortion analysis of analog integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Wambacq ; Dept. of Elektrotech., Katholieke Univ., Leuven, Belgium ; G. G. E. Gielen ; P. R. Kinget ; W. Sansen

An approach is presented for the analysis of the nonlinear behavior of analog integrated circuits. The approach is based on a variant of the Volterra series approach for frequency domain analysis of weakly nonlinear circuits with one input port, such as amplifiers, and with more than one input port, such as analog mixers and multipliers. By coupling numerical results with symbolic results, both obtained with this method, insight into the nonlinear operation of analog integrated circuits can be gained. For accurate distortion computations, the accuracy of the transistor models is critical. A MOS transistor model is discussed that allows us to explain the measured fourth-order nonlinear behavior of a 1 GHz CMOS upconverter. Further, the method is illustrated with several examples, including the analysis of an operational amplifier up to its gain-bandwidth product. This example has also been verified experimentally

Published in:

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing  (Volume:46 ,  Issue: 3 )