By Topic

An exponentially stable adaptive control for force and position tracking of robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Villani, L. ; Dipartimento di Inf. e Sistematica, Univ. degli Studi di Napoli Frederico II, Italy ; Canudas de Wit, C. ; Brogliato, B.

The problem of controlling a robot manipulator while the end effector is in contact with an environment of finite but unknown stiffness is considered. An exponentially stable control law is derived starting from a passivity-based position control algorithm. The original position trajectory is scaled along the interaction direction so as to achieve force tracking as well as position tracking along the unconstrained directions. A passivity-based adaptive algorithm is designed to avoid the explicit computation of the scaling factor, which depends on the unknown stiffness of the environment, leading to time-varying PID control actions on the force error

Published in:

Automatic Control, IEEE Transactions on  (Volume:44 ,  Issue: 4 )