Cart (Loading....) | Create Account
Close category search window
 

Theory and experiment of a single-mode diode laser subject to external light injection from several lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Troger, J. ; Lab. of Metrol., Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Thevenaz, L. ; Nicati, P.-A. ; Robert, P.A.

A theoretical and experimental study of a graded-index separate confinement heterostructure (GRIN-SCH) distributed feedback (DFB) multiquantum-well (MQW) diode laser emitting at 1.55 μm subject to external light injection from several lasers is presented. Lang's model for the classical single master-slave configuration is extended to include light injection from several master lasers. Free carrier transport effects are taken into account. An experimental validation of the model for two master lasers is made by means of a quantitative comparison between measured and calculated optical spectra. A fiber optics experimental setup makes it possible to measure precisely the power which is injected into the slave laser from each master laser. Measurements and model are in good quantitative agreement

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 4 )

Date of Publication:

Apr 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.