By Topic

Statistical deformable model-based segmentation of image motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kervrann, C. ; IRISA/INRA, Rennes, France ; Heitz, F.

We present a statistical method for the motion-based segmentation of deformable structures undergoing nonrigid movements. The proposed approach relies on two models describing the shape of interest, its variability, and its movement. The first model corresponds to a statistical deformable template that constrains the shape and its deformations. The second model is introduced to represent the optical flow field inside the deformable template. These two models are combined within a single probability distribution, which enables to derive shape and motion estimates using a maximum likelihood approach. The method requires no manual initialization and is demonstrated on synthetic data and on a medical X-ray image sequence

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 4 )