By Topic

The application of multiwavelet filterbanks to image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Strela, V. ; Dept. of Math., Dartmouth Coll., Hanover, NH, USA ; Heller, P.N. ; Strang, G. ; Topiwala, P.
more authors

Multiwavelets are a new addition to the body of wavelet theory. Realizable as matrix-valued filterbanks leading to wavelet bases, multiwavelets offer simultaneous orthogonality, symmetry, and short support, which is not possible with scalar two-channel wavelet systems. After reviewing this theory, we examine the use of multiwavelets in a filterbank setting for discrete-time signal and image processing. Multiwavelets differ from scalar wavelet systems in requiring two or more input streams to the multiwavelet filterbank. We describe two methods (repeated row and approximation/deapproximation) for obtaining such a vector input stream from a one-dimensional (1-D) signal. Algorithms for symmetric extension of signals at boundaries are then developed, and naturally integrated with approximation-based preprocessing. We describe an additional algorithm for multiwavelet processing of two-dimensional (2-D) signals, two rows at a time, and develop a new family of multiwavelets (the constrained pairs) that is well-suited to this approach. This suite of novel techniques is then applied to two basic signal processing problems, denoising via wavelet-shrinkage, and data compression. After developing the approach via model problems in one dimension, we apply multiwavelet processing to images, frequently obtaining performance superior to the comparable scalar wavelet transform

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 4 )