By Topic

Finite-element solution of monopolar corona on bundle conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Hamouz, Z.M. ; King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Abdel-Salam, M.

A finite-element iterative-based method is developed to analyze the monopolar ionized field and, hence, compute the associated corona power loss on bundle conductors (bundles two, three, and four are considered). The effect of the number of bundles, and the bundle spacing on the corona current and ground-plane current density profiles is investigated. It has been found that, with the increase in the number of bundles, the corona current decreases. On the other hand, the corona current increases with the increase in the bundle spacing. A laboratory model was built to check the accuracy of the calculated corona current and the ground-plane current density profiles. It has been found that the present results agreed well with the present and previous experimental values

Published in:

Industry Applications, IEEE Transactions on  (Volume:35 ,  Issue: 2 )