By Topic

Device-level early floorplanning algorithms for RF circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aktuna, M. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Rutenbar, R.A. ; Carley, L.R.

High-frequency circuits are notoriously difficult to lay out because of the tight coupling between device-level placement and wiring. Given that successful electrical performance requires careful control of the lowest-level geometric features-wire bends, precise length, planarity, etc., we suggest a new layout strategy for these circuits: early floorplanning at the device level. This paper develops a floorplanner for radio-frequency circuits based on a genetic algorithm (GA) that supports fully simultaneous placement and routing. The GA evolves slicing-style floorplans comprising devices and planned areas for wire meanders. Each floorplan candidate is fully routed with a gridless, detailed maze-router which can dynamically resize the floorplan as necessary. Experimental results demonstrate the ability of this approach to successfully optimize for wire planarity, realize multiple constraints on net lengths or phases, and achieve reasonable area in modest CPU times

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )