By Topic

Iterative maximum-likelihood trellis decoding for block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Luna, A.A. ; Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA ; Fontaine, F.M. ; Wicker, S.B.

An iterative trellis search technique is described for the maximum-likelihood (ML) soft decision decoding of block codes. The proposed technique derives its motivation from the fact that a given block code may be a subcode for a parent code whose associated trellis has substantially fewer edges. Through the use of list-Viterbi (1967) decoding and an iterative algorithm, the proposed technique allows for the use of a trellis for the parent code in the ML decoding of the desired subcode. Complexity and performance analyses, as well as details of potential implementations, indicate a substantial reduction in decoding complexity for linear block codes of practical length while achieving ML or near-ML soft decision performance

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 3 )