Cart (Loading....) | Create Account
Close category search window
 

The LRPD test: speculative run-time parallelization of loops with privatization and reduction parallelization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rauchwerger, L. ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Padua, D.A.

Current parallelizing compilers cannot identify a significant fraction of parallelizable loops because they have complex or statically insufficiently defined access patterns. As parallelizable loops arise frequently in practice, we advocate a novel framework for their identification: speculatively execute the loop as a doall and apply a fully parallel data dependence test to determine if it had any cross-iteration dependences; if the test fails, then the loop is reexecuted serially. Since, from our experience, a significant amount of the available parallelism in Fortran programs can be exploited by loops transformed through privatization and reduction parallelization, our methods can speculatively apply these transformations and then check their validity at run-time. Another important contribution of this paper is a novel method for reduction recognition which goes beyond syntactic pattern matching: it detects at run-time if the values stored in an array participate in a reduction operation, even if they are transferred through private variables and/or are affected by statically unpredictable control flow. We present experimental results on loops from the PERFECT Benchmarks, which substantiate our claim that these techniques can yield significant speedups which are often superior to those obtainable by inspector/executor methods

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

Feb 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.