By Topic

Orthogonal complex filter banks and wavelets: some properties and design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao-Ping Zhang ; Tsinghua Univ., Beijing, China ; Desai, M.D. ; Ying-Ning Peng

Previous wavelet research has primarily focused on real-valued wavelet bases. However, complex wavelet bases offer a number of potential advantageous properties. For example, it has been suggested that the complex Daubechies wavelet can be made symmetric. However, these papers always imply that if the complex basis has a symmetry property, then it must exhibit linear phase as well. In this paper, we prove that a linear-phase complex orthogonal wavelet does not exist. We study the implications of symmetry and linear phase for both complex and real-valued orthogonal wavelet bases. As a byproduct, we propose a method to obtain a complex orthogonal wavelet basis having the symmetry property and approximately linear phase. The numerical analysis of the phase response of various complex and real Daubechies wavelets is given. Both real and complex-symmetric orthogonal wavelet can only have symmetric amplitude spectra. It is often desired to have asymmetric amplitude spectra for processing general complex signals. Therefore, we propose a method to design general complex orthogonal perfect reconstruct filter banks (PRFBs) by a parameterization scheme. Design examples are given. It is shown that the amplitude spectra of the general complex conjugate quadrature filters (CQFs) can be asymmetric with respect the zero frequency. This method can be used to choose optimal complex orthogonal wavelet basis for processing complex signals such as in radar and sonar

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 4 )