By Topic

Narrow-band interference suppression in spread-spectrum CDMA communications using pipelined recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Po-Rong Chang ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jen-Tsung Hu

This paper investigates the application of pipelined recurrent neural networks (PRNN's) to the narrow-band interference (NBI) suppression over spread-spectrum (SS) code-division multiple-access (CDMA) channels in the presence of additive white Gaussian noise (AWGN) plus non-Gaussian observation noise. Optimal detectors and receivers for such channels are no longer linear. A PRNN that consists of a number of simpler small-scale recurrent neural network (RNN) modules with less computational complexity is conducted to introduce best nonlinear approximation capability into the minimum mean-squared error nonlinear predictor model in order to accurately predict the NBI signal based on adaptive learning for each module from previous non-Gaussian observations. Once the prediction of the NBI signal is obtained, a resulting signal is computed by subtracting the estimate from the received signal. Thus, the effect of the NBI can be reduced. Moreover, since those modules of a PRNN can be performed simultaneously in a pipelined parallelism fashion, this would lead to a significant improvement in its total computational efficiency. Simulation results show that PRNN-based NBI rejection provides a superior signal-to-noise ratio (SNR) improvement relative to the conventional adaptive nonlinear approximate conditional mean (ACM) filters, especially when the channel statistics and exact number of CDMA users are not known to those receivers

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 2 )