By Topic

Maximizing land cover classification accuracies produced by decision trees at continental to global scales

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Friedl, M.A. ; Dept. of Geogr., Boston Univ., MA, USA ; Brodley, C.E. ; Strahler, A.H.

Classification of land cover from remotely sensed data at continental to global scales requires sophisticated algorithms and feature selection techniques to optimize classifier performance. The authors examine methods to maximize classification accuracies using decision trees to map land cover from multitemporal AVHRR imagery at continental and global scales. As part of their analysis they test the utility of “boosting”, a new technique developed to increase classification accuracy by forcing the learning (classification) algorithm to concentrate on those training observations that are most difficult to classify. Their results show that boosting consistently reduces misclassification rates by 20-50% depending on the data set in question, and that most of the benefit gained by boosting is achieved after seven boosting iterations. They also assess the utility of including phenological metrics and geographic position as additional features to the classification algorithm. They find that using derived phenological metrics produces little improvement in classification accuracy relative to using an annual time series of NDVI data, but that geographic position provides substantial power for predicting land cover types at continental and global scales. However, in order to avoid generating spurious classification accuracies using geographic position, training data must be distributed evenly in geographic space

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 2 )