Cart (Loading....) | Create Account
Close category search window

Blind source separation of more sources than mixtures using overcomplete representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Te-Won Lee ; Comput. Neurobiol. Lab., Howard Hughes Med. Inst., La Jolla, CA, USA ; Lewicki, M.S. ; Girolami, M. ; Sejnowski, T.J.

Empirical results were obtained for the blind source separation of more sources than mixtures using a previously proposed framework for learning overcomplete representations. This technique assumes a linear mixing model with additive noise and involves two steps: (1) learning an overcomplete representation for the observed data and (2) inferring sources given a sparse prior on the coefficients. We demonstrate that three speech signals can be separated with good fidelity given only two mixtures of the three signals. Similar results were obtained with mixtures of two speech signals and one music signal.

Published in:

Signal Processing Letters, IEEE  (Volume:6 ,  Issue: 4 )

Date of Publication:

April 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.