Cart (Loading....) | Create Account
Close category search window
 

A multivariable self-learning fuzzy control algorithm for dyeing processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Lu ; Dept. of Mech. & Aerosp. Eng., North Carolina State Univ., Raleigh, NC, USA ; Jasper, W. ; Lee, G.K.

Complex industrial processes such as chemical reactors, steelmaking, and dyeing processes are difficult to control automatically, due to the complexity and uncertainty of the processes. Parametric control methods require some a priori knowledge of the process model structure as well as possibly the range of the process model parameters. Such methods as nonlinear robust control and adaptive control belong to this category. In the case when model identification is not feasible, nonparametric methods offer an alternative solution to control. One such method, fuzzy logic control (FLC) is used to simulate the decision-making activities of an experienced expert. Usually, the control decisions of an expert can be expressed linguistically as a set of heuristic decision rules. These rules are used to build rulebases for FLC; further algorithms are used to convert the results of these rules to quantitative outputs. Several fuzzy logic control schemes have been developed, including some adaptive methods. However, many of these methods can only handle single input, single output (SISO) systems. In this paper, a multi-input, multi-output scheme is developed. The method is based upon a SISO technique previously developed for a self-learning FLC with on-line scaling factor tuning. The method employs optimization techniques to provide the FLC outputs and an application to dyeing processes is discussed. Simulation results employing the MIMO FLC on a three dyeing process are presented. Finally the experimental dyeing process testbed which will be used for hardware verification is discussed.

Published in:

American Control Conference, 1994  (Volume:1 )

Date of Conference:

29 June-1 July 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.