By Topic

Robust constrained model predictive control using linear matrix inequalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kothare, M.V. ; Dept. of Chem. Eng., California Inst. of Technol., Pasadena, CA, USA ; Balakrishnan, V. ; Morai, M.

The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to explicitly deal with model uncertainty. In this paper, the authors address the robustness issue in MPC by directly incorporating the description of plant uncertainty in the MPC problem formulation. The plant uncertainty is expressed in the time-domain by allowing the state-space matrices of the discrete-time plant to be arbitrarily time-varying and belonging to a polytope. The existence of a feedback control law minimizing an upper bound on the infinite horizon objective function and satisfying the input and output constraints is reduced to a convex optimization over linear matrix inequalities (LMIs). It is shown that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing.

Published in:

American Control Conference, 1994  (Volume:1 )

Date of Conference:

29 June-1 July 1994