By Topic

Analyzing measurements of nonlinear transfer functions with Tschebyshev polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. A. Krafft ; TJNAF, Newport News, VA, USA

Recently, due to advances in computers and data aquisition systems, the following type of measurement has become more common: (1) Impress a given modulation on a device to be tested. (2) Acquire a data stream, usually at equally spaced sample intervals, of the response of the system to the modulation. (3) Fit the data thereby acquired to some nonlinear function set that might (or might not!) describe the response of the device. In this paper it is pointed out that by choosing to modulate the test parameter sinusoidally, and by fast-Fourier transforming the acquired data stream, one unambiguously determines the Tschebyshev expansion of the response function around the working point, potentially yielding quantitative information about high nonlinear orders in the system response. The need for data fitting is thereby eliminated. A detailed example, the analysis of the nonlinear phase-phase transfer function in the Jefferson Lab injector, is presented

Published in:

Particle Accelerator Conference, 1997. Proceedings of the 1997  (Volume:2 )

Date of Conference:

12-16 May 1997