By Topic

The peaking phenomenon and the global stabilization of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sussmann, H.J. ; Dept. of Math., Rutgers Univ., New Brunswick, NJ, USA ; Kokotovic, P.V.

The problem of global stabilization is considered for a class of cascade systems. The first part of the cascade is a linear controllable system and the second part is a nonlinear system receiving the inputs from the states of the first part. With zero input, the equilibrium of the nonlinear part is globally asymptotically stable. In linear systems, a peaking phenomenon occurs when high-gain feedback is used to produce eigenvalues with very negative real parts. It is established that the destabilizing effects of peaking can be reduced if the nonlinearities have sufficiently slow growth. A detailed analysis of the peaking phenomenon is provided. The tradeoffs between linear peaking and nonlinear growth conditions are examined

Published in:

Automatic Control, IEEE Transactions on  (Volume:36 ,  Issue: 4 )