By Topic

Convergence analysis of the LMS algorithm with a general error nonlinearity and an IID input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Al-Naffouri, Tareq Y. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Zerguine, A. ; Bettayeb, M.

The class of least mean square (LMS) algorithms employing a general error nonlinearity is considered. A linearization approach is used to characterize the convergence and performance of this class of algorithms for an independent and identically distributed (IID) input. The analysis results are entirely consistent with those of the LMS algorithm and several of its variants. The results also encompass those of a previous work that considered the same class of algorithms for arbitrary and Gaussian inputs.

Published in:

Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on  (Volume:1 )

Date of Conference:

1-4 Nov. 1998