By Topic

Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ermer, J.J. ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA ; Mosher, J.C. ; Leahy, R.M. ; Mingxiong Huang

An important class of experiments in fractional brain mapping involves collecting pairs of data corresponding to separate "task" and "control" conditions. The data are then analyzed to determine what activity occurs during the task experiment but not in the control. Here we describe a new method for processing paired magnetoencephalographic (MEG) data sets using our recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm. In this method the signal subspace of the task data is projected against the orthogonal complement of the control data signal subspace to obtain a subspace which describes activity unique to the task. A RAP-MUSIC localization search is then performed on this projected data to localize the sources which are active in the task but not in the control data.

Published in:

Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on  (Volume:1 )

Date of Conference:

1-4 Nov. 1998