By Topic

Data sieving and collective I/O in ROMIO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thakur, R. ; Div. of Math. & Comput. Sci., Argonne Nat. Lab., IL, USA ; Gropp, W. ; Lusk, E.

The I/O access patterns of parallel programs often consist of accesses to a large number of small, noncontiguous pieces of data. If an application's I/O needs are met by making many small, distinct I/O requests, however, the I/O performance degrades drastically. To avoid this problem, MPI-IO allows users to access a noncontiguous data set with a single I/O function call. This feature provides MPI-IO implementations an opportunity to optimize data access. We describe how our MPI-IO implementation, ROMIO, delivers high performance in the presence of noncontiguous requests. We explain in detail the two key optimizations ROMIO performs: data sieving for noncontiguous requests from one process and collective I/O for noncontiguous requests from multiple processes. We describe how one can implement these optimizations portably on multiple machines and file systems, control their memory requirements, and also achieve high performance. We demonstrate the performance and portability with performance results for three applications-an astrophysics-application template (DIST3D) the NAS BTIO benchmark, and an unstructured code (UNSTRUC)-on five different parallel machines: HP Exemplar IBM SP, Intel Paragon, NEC SX-4, and SGI Origin2000

Published in:

Frontiers of Massively Parallel Computation, 1999. Frontiers '99. The Seventh Symposium on the

Date of Conference:

21-25 Feb 1999