By Topic

A method to determine the required number of neural-network training repetitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iyer, M.S. ; Dept. of Chem. Eng., Texas Tech. Univ., Lubbock, TX, USA ; Rhinehart, R.R.

Conventional neural-network training algorithms often get stuck in local minima. To find the global optimum, training is conventionally repeated with ten, or so, random starting values for the weights. Here we develop an analytical procedure to determine how many times a neural network needs to be trained, with random starting weights, to ensure that the best of those is within a desirable lower percentile of all possible trainings, with a certain level of confidence. The theoretical developments are validated by experimental results. While applied to neural-network training, the method is generally applicable to nonlinear optimization

Published in:

Neural Networks, IEEE Transactions on  (Volume:10 ,  Issue: 2 )