Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Guidance-based quantification of arm impairment following brain injury: a pilot study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reinkensmeyer, D.J. ; Dept. of Phys. Med. & Rehabilitation, Northwestern Univ. Med. Sch., Chicago, IL, USA ; Dewald, J.P.A. ; Rymer, W.Z.

Reports the design and preliminary testing of a device for evaluating arm impairment after brain injury. The assisted rehabilitation and measurement (ARM) Guide is capable of mechanically guiding reaching and retrieval movements across the workspace and of measuring constraint forces and range of motion during guidance. The authors tested the device on four hemiplegic brain-injured individuals and four unimpaired control subjects. During guided movement, the brain-injured subjects generated distinct spatial patterns of constraint force with their impaired arms that were consistent with the standard flexion and extension “synergies” described in the clinical literature. In addition, the impaired arms exhibited well-defined workspace deficits as measured by the ARM Guide. These results suggest that constraint force and range of motion measurements during mechanically guided movement may prove useful for precise monitoring of arm impairment and of the effects of treatment techniques targeted at abnormal synergies and workspace deficits

Published in:

Rehabilitation Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 1 )