By Topic

Fully digital controlled variable active-passive reactance (VAPAR)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Funato, H. ; Dept. of Electr. & Electron. Eng., Utsunomiya Univ., Japan ; Kamiyama, K.

An inductance affects the response of power circuits. For example, the current response of DC motor depends on the armature inductance. The authors have been proposed an inductance controller using variable active-passive reactance (VAPAR) in a power circuit. VAPAR needs an output filter to reduce the ripples if it is connected to the power system. The output filter may cause resonance in current and/or voltage. A resonance suppression method has been proposed by H. Funato et al. (1997). If a state feedback method is employed for this controller, the carrier frequency of the inverter must be much higher than cutoff frequency. In this paper, the fully digital control method of VAPAR is proposed using a deadbeat control method. Using the proposed method, excellent response without transient resonance is demonstrated through simulations and experiments

Published in:

Applied Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual  (Volume:1 )

Date of Conference:

14-18 Mar 1999