By Topic

Asymptotic optimality of likelihood ratio threshold tests in decentralized detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jenn-Sen Leu ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; A. Papamarcou

Two distributed systems are considered for discriminating between two finite-alphabet bivariate memoryless sources and for detecting a known signal in stationary bivariate additive Gaussian noise. Each system comprises two sensors, M-ary local quantizers and a fusion center which makes decisions based on quantized source observations. The problem of asymptotically optimal quantization is considered in detail for the binary (M=2) case. It is shown that optimality is achieved by quantizing a locally computed likelihood ratio wherein one distribution is in general different from the appropriate source marginal. For the problem of detection in Gaussian noise, it is further demonstrated that the optimal distributed system attains the same asymptotic performance as the optimal centralized system for appropriate choice of M

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 2 )