Cart (Loading....) | Create Account
Close category search window
 

The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muthuswamy, J. ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Roy, Rob J.

The objective of this study was to design and evaluate a methodology for estimating the depth of anesthesia in a canine model that integrates electroencephalogram (EEG)-derived autoregressive (AR) parameters, hemodynamic parameters, and the alveolar anesthetic concentration. Using a parametric approach, two separate AR models of order ten were derived for the EEG, one from the third-order cumulant sequence and the other from the autocorrelation lags of the EEG. Since the anesthetic dose versus depth of anesthesia curve is highly nonlinear, a neural network (NN) was chosen as the basic estimator and a multiple NN approach was conceived which took hemodynamic parameters, EEG derived parameters, and anesthetic concentration as input feature vectors. Since the estimation of the depth of anesthesia involves cognitive as well as statistical uncertainties, a fuzzy integral was used to integrate the individual estimates of the various networks and to arrive at the final estimate of the depth of anesthesia. Data from 11 experiments were used to train the NN's which were then tested on nine other experiments. The fuzzy integral of the individual NN estimates (when tested on 43 feature vectors from seven of the nine test experiments) classified 40 (93%) of them correctly, offering a substantial improvement over the individual NN estimates.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:46 ,  Issue: 3 )

Date of Publication:

March 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.