By Topic

High performance low power array multiplier using temporal tiling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahant-Shetti, S.S. ; DSPS R&D Center, Texas Instrum. Inc., Dallas, TX, USA ; Balsara, P.T. ; Lemonds, C.

Digital multipliers are a major source power dissipation in digital signal processors. Array architecture is a popular technique to implement these multipliers due to its regular compact structure. High power dissipation in these structures is mainly due to the switching of a large number of gates during multiplication. In addition, much power is also dissipated due to a large number of spurious transitions on internal nodes. Timing analysis of a full adder, which is a basic building block in array multipliers, has resulted in a different array connection pattern that reduces power dissipation due to the spurious transition activity. Furthermore, this connection pattern also improves the multiplier throughput. This array pattern is based on creating a compact tiled structure, wherein the shape of a tile represents the delay through that tile. That is, a compact structure created using these tiles is nothing but a structure with high throughput. Such a temporal tiling technique can also be applied to other digital circuits. Based on our simulation studies, a temporally tiled array multiplier achieves 50% and 35% improvements in delay and power dissipation compared to a conventional array multiplier. Improvement in delay can be traded for power using voltage reduction techniques.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )