By Topic

A new scalable VLSI architecture for Reed-Solomon decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wilhelm, W. ; Dept. of Electr. Eng. & Comput. Syst., Univ. of Technol., Aachen, Germany

A very-large-scale integration architecture for Reed-Solomon (RS) decoding is presented that is scalable with respect to the throughput rate. This architecture enables given system specifications to be matched efficiently independent of a particular technology. The scalability is achieved by applying a systematic time-sharing technique. Based on this technique, new regular, multiplexed architectures have been derived for solving the key equation and performing finite field divisions. In addition to the flexibility, this approach leads to a small silicon area in comparison with several decoder implementations published in the past. The efficiency of the proposed architecture results from a fine granular pipeline scheme throughout each of the RS decoder components and a small overhead for the control circuitry. Implementation examples show that due to the pipeline strategy, data rates up to 1.28 Gbit/s are reached in a 0.5 μm CMOS technology

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:34 ,  Issue: 3 )