Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Mismatch shaping for a current-mode multibit delta-sigma DAC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Shui ; Philips Semicond., Sunnyvale, CA, USA ; Schreier, R. ; Hudson, F.

Mismatch shaping allows the use of multibit quantization in delta-sigma analog-to-digital converters and digital-to-analog converters (DAC's) since it noise-shapes the error caused by static element mismatch in a multibit DAC. In this paper, mismatch-shaping techniques for low-pass delta-sigma (ΔΣ) modulators are reviewed, and a mismatch-shaping technique for bandpass ΔΣ modulators is described. The dynamic error caused by frequent element switching is identified as a major source of error in a current-mode DAC with a continuous-time output. Modifying the mismatch-shaping algorithm to account for this effect yields a continuous-time ΔΣ DAC that is insensitive to both element mismatch and element switching dynamics. Experimental results confirm the effectiveness of the proposed techniques

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:34 ,  Issue: 3 )