By Topic

Modeling digital substrate noise injection in mixed-signal IC's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
E. Charbon ; Cadence Design Syst. Inc., San Jose, CA, USA ; P. Miliozzi ; L. P. Carloni ; A. Ferrari
more authors

Techniques are presented to compactly represent substrate noise currents injected by digital networks. Using device-level simulation, every gate in a given library is modeled by means of the signal waveform it injects into the substrate, depending on its input transition scheme. For a given sequence of input vectors, the switching activity of every node in the Boolean network is computed. Assuming that technology mapping has been performed, each node corresponds to a gate in the library, hence, to a specific injection waveform. The noise contribution of each node is computed by convolving its switching activity with the associated injection waveforms. The total injected noise for the digital block is then obtained by summing all the noise contributions in the circuit. The resulting injected noise can be viewed as a random process, whose power spectrum is computed using standard signal processing techniques. A study was performed on a number of standard benchmark circuits to verify the validity of the assumptions and to measure the accuracy of the obtained power spectra

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:18 ,  Issue: 3 )