By Topic

Sliding mode measurement feedback control for antilock braking systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Unsal ; Inst. of Complex Eng. Syst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; P. Kachroo

We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road conditions

Published in:

IEEE Transactions on Control Systems Technology  (Volume:7 ,  Issue: 2 )