Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

QoS routing in networks with uncertain parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lorenz, D.H. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Orda, A.

We consider the problem of routing connections with quality of service (QoS) requirements across networks when the information available for making routing decisions is inaccurate. Such uncertainty about the actual state of a network component arises naturally in a number of different environments. The goal of the route selection process is then to identify a path that is most likely to satisfy the QoS requirements. For end-to-end delay guarantees, this problem is intractable. However, we show that by decomposing the end-to-end constraint into local delay constraints, efficient and tractable solutions can be established. Moreover, we argue that such decomposition better reflects the interoperability between the routing and reservation phases. We first consider the simpler problem of decomposing the end-to-end constraint into local constraints for a given path. We show that, for general distributions, this problem is also intractable. Nonetheless, by defining a certain class of probability distributions, which includes typical distributions, and restricting ourselves to that class, we are able to establish efficient and exact solutions. We then consider the general problem of combined path optimization and delay decomposition and present efficient solutions. Our findings are applicable also to a broader problem of finding a path that meets QoS requirements at minimal cost, where the cost of each link is some general increasing function of the QoS requirements from the link

Published in:

Networking, IEEE/ACM Transactions on  (Volume:6 ,  Issue: 6 )