Cart (Loading....) | Create Account
Close category search window

Ion dose uniformity for planar sample plasma immersion ion implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tat-Kun Kwok, D. ; Dept. of Phys. & Mater. Sci., City Univ. of Hong Kong, Kowloon, Hong Kong ; Chu, P.K. ; Chan, Chung

In spite of recent progress on plasma immersion ion implantation (PIII) in semiconductor processing, for example, formation of silicon on insulator and shallow junctions, ion dose, and energy uniformity remains a major concern. We have recently discovered that the sample stage (chuck) design can impact ion uniformity significantly. Using a theoretical model, we have investigated three different chuck designs and conclude that insulators on the stage can alter the adjacent electric field and ion trajectories. Even though the conventional stage design incorporating a quartz shroud reduces the load on the power supply and contamination, it yields ion dose and energy nonuniformity unacceptable to the semiconductor industry. Thus, for semiconductor applications, the stage should be made of a conductor, preferably silicon or silicon coated materials and free of quartz

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 6 )

Date of Publication:

Dec 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.