Cart (Loading....) | Create Account
Close category search window
 

An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Won Gi Jeon ; Dept. of Electr. Eng., Chungang Univ., Seoul, South Korea ; Kyung Hi Chang ; Yong Soo Cho

A loss of subchannel orthogonality due to time-variant multipath channels in orthogonal frequency division multiplexing (OFDM) systems leads to interchannel interference (ICI) which increases the error floor in proportion to the Doppler frequency. A simple frequency-domain equalization technique which can compensate for the effect of ICI in a multipath fading channel is proposed. In this technique, the equalization of the received OFDM signal is achieved by using the assumption that the channel impulse response (CIR) varies in a linear fashion during a block period and by compensating for the ICI terms that significantly affect the bit-error rate (BER) performance

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.