Cart (Loading....) | Create Account
Close category search window
 

An LMS adaptive second-order Volterra filter with a zeroth-order term: steady-state performance analysis in a time-varying environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sayadi, M. ; Ecole Superieure des Sci. et Tech. de Tunis, Tunisia ; Fnaiech, F. ; Najim, Mohamed

This article studies the steady-state performance of the least mean square (LMS) adaptive second-order Volterra filter (SOVF) with a zeroth-order term for Gaussian inputs. The mean-square-error (MSE) criterion is evaluated first. Then, SOV LMS algorithm-based updating equations are derived. Next, the steady-state performance of the recursions is analyzed for a random walk model for the unknown system parameters, and the steady-state excess MSE is evaluated. Finally, the theoretical performance predictions are shown to be in good agreement with simulation results, especially for small step sizes

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 3 )

Date of Publication:

Mar 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.