By Topic

Statistical analysis of the product high-order ambiguity function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scaglione, A. ; INFOCOM Dept., Rome Univ., Italy ; Barbarossa, S.

The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs

Published in:

Information Theory, IEEE Transactions on  (Volume:45 ,  Issue: 1 )