By Topic

Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Kamphuis ; Image Scis. Inst., Univ. Hosp. Utrecht, Netherlands ; F. J. Beekman

Iterative maximum likelihood (ML) transmission computed tomography algorithms have distinct advantages over Fourier-based reconstruction, but unfortunately require increased computation time. The convex algorithm is a relatively fast iterative ML algorithm but it is nevertheless too slow for many applications. Therefore, an acceleration of this algorithm by using ordered subsets of projections is proposed [ordered subsets convex algorithm (OSC)]. OSC applies the convex algorithm sequentially to subsets of projections, OSC was compared with the convex algorithm using simulated and physical thorax phantom data. Reconstructions were performed for OSC using eight and 16 subsets (eight and four projections/subset, respectively). Global errors, image noise, contrast recovery, and likelihood increase were calculated. Results show that OSC is faster than the convex algorithm, the amount of acceleration being approximately proportional to the number of subsets in OSC, and it causes only a slight increase of noise and global errors in the reconstructions. Images and image profiles of the reconstructions were in good agreement, In conclusion, OSC and the convex algorithm result in similar image quality but OSC is more than an order of magnitude faster.

Published in:

IEEE Transactions on Medical Imaging  (Volume:17 ,  Issue: 6 )