By Topic

Novel thermally reworkable underfill encapsulants for flip-chip applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lejun Wang ; Sch. of Mater. Sci & Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Wong, C.P.

The flip-chip technique of integrated circuit (IC) chip interconnection is the emerging technology for high performance, high input/output (I/O) IC devices. Due to the coefficient of thermal expansion mismatch between the silicon IC (CTE=2.5 ppm/°C) and the low cost organic substrate such as FR-4 printed wiring board (CTE=18-22 ppm/°C), the flip-chip solder joints experience high shear stresses during temperature cycling. Underfill encapsulant is used to couple the bilayer structure and is critical to the reliability of the flip-chip solder interconnects. Current underfill encapsulants are filled epoxy-based materials that are normally not reworkable after curing. This forms an obstacle to flip-chip on board (FCOB) technology development, where unknown bad dies (UBD) are still a concern. Approaches have been taken to develop the thermally reworkable underfill materials in order to address the nonreworkability problem of the commercial underfill encapsulants. These approaches include introduction of thermally cleavable blocks into epoxides and addition of additives to the epoxies. In the first approach, five diepoxides containing thermally cleavable blocks were synthesized and characterized. These diepoxides were mixed with hardener and catalyst. Then the mixture properties of Tg, onset decomposition temperature, storage modulus, CTE, and viscosity were studied and compared with those of the standard formulation based on the commercial epoxy resin ERL-4221E. These mixtures all decomposed at lower temperature than the standard formulation. Moreover, one mixture, Epoxy5, showed acceptable Tg, low viscosity, and fairly good adhesion. In the second approach, two additives were discovered that provide die removal capability to the epoxy formulation without interfering with the epoxy cure or properties of the cured epoxy system. Furthermore, the combination of the two approaches showed positive results

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:22 ,  Issue: 1 )