By Topic

A supervisory fuzzy neural network control system for tracking periodic inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan ; Wen-Jyi Hwang ; Rong-Jong Wai

A supervisory fuzzy neural network (FNN) control system is designed to track periodic reference inputs in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive with a supervisory FNN position controller. The supervisory FNN controller comprises a supervisory controller, which is designed to stabilize the system states around a defined bound region and an FNN sliding-mode controller, which combines the advantages of the sliding-mode control with robust characteristics and the FNN with online learning ability. The theoretical and stability analyses of the supervisory FNN controller are discussed in detail. Simulation and experimental results show that the proposed control system is robust with regard to plant parameter variations and external load disturbance. Moreover, the advantages of the proposed control system are indicated in comparison with the sliding-mode control system

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:7 ,  Issue: 1 )