Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Fitting curves and surfaces with constrained implicit polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Keren, D. ; Dept. of Comput. Sci., Haifa Univ., Israel ; Gotsman, C.

A problem which often arises while fitting implicit polynomials to 2D and 3D data sets is the following: although the data set is simple, the fit exhibits undesired phenomena, such as loops, holes, extraneous components, etc. Previous work tackled these problems by optimizing heuristic cost functions, which penalize some of these topological problems in the fit. The paper suggests a different approach-to design parameterized families of polynomials whose zero-sets are guaranteed to satisfy certain topological properties. Namely, we construct families of polynomials with star-shaped zero-sets, as well as polynomials whose zero-sets are guaranteed not to intersect an ellipse circumscribing the data or to be entirely contained in such an ellipse. This is more rigorous than using heuristics which may fail and result in pathological zero-sets. The ability to parameterize these families depends heavily on the ability to parameterize positive polynomials. To achieve this, we use some powerful results from real algebraic geometry

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 1 )