By Topic

Game-theoretic integration for image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chakraborty, A. ; Siemens Corp. Res. Inc., Princeton, NJ, USA ; Duncan, J.S.

Robust segmentation of structures from an image is essential for a variety of image analysis problems. However, the conventional methods of region-based segmentation and gradient-based boundary finding are often frustrated by poor image quality. Here we propose a method to integrate the two approaches using game theory in an effort to form a unified approach that is robust to noise and poor initialization. This combines the perceptual notions of complete boundary information using edge data and shape priors with gray-level homogeneity using two computational modules. The novelty of the method is that this is a bidirectional framework, whereby both computational modules improve their results through mutual information sharing. A number of experiments were performed both on synthetic datasets and datasets of real images to evaluate the new approach and it is shown that the integrated method typically performs better than conventional gradient-based boundary finding

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 1 )