By Topic

The Gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keim, D.A. ; Inst. of Comput. Sci., Halle-Wittenberg Univ., Halle, Germany ; Herrmann, A.

In a large number of applications, data is collected and referenced by their spatial locations. Visualizing large amounts of spatially referenced data on a limited-size screen display often results in poor visualizations due to the high degree of overplotting of neighboring datapoints. We introduce a new approach to visualizing large amounts of spatially referenced data. The basic idea is to intelligently use the unoccupied pixels of the display instead of overplotting data points. After formally describing the problem, we present two solutions which are based on: placing overlapping data points on the nearest unoccupied pixel; and shifting data points along a screen-filling curve (e.g., Hilbert-curve). We then develop a more sophisticated approach called Gridfit, which is based on a hierarchical partitioning of the data space. We evaluate all three approaches with respect to their efficiency and effectiveness and show the superiority of the Gridfit approach. For measuring the effectiveness, we not only present the resulting visualizations but also introduce mathematical effectiveness criteria measuring properties of the generated visualizations with respect to the original data such as distance- and position-preservation.

Published in:

Visualization '98. Proceedings

Date of Conference:

24-24 Oct. 1998