By Topic

Smooth view-dependent level-of-detail control and its application to terrain rendering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hoppe, H. ; Microsoft Res., USA

The key to real-time rendering of large-scale surfaces is to locally adapt surface geometric complexity to changing view parameters. Several schemes have been developed to address this problem of view-dependent level-of-detail control. Among these, the view-dependent progressive mesh (VDPM) framework represents an arbitrary triangle mesh as a hierarchy of geometrically optimized refinement transformations, from which accurate approximating meshes can be efficiently retrieved. In this paper we extend the general VDPM framework to provide temporal coherence through the run-time creation of geomorphs. These geomorphs eliminate "popping" artifacts by smoothly interpolating geometry. Their implementation requires new output-sensitive data structures, which have the added benefit of reducing memory use. We specialize the VDPM framework to the important case of terrain rendering. To handle huge terrain grids, we introduce a block-based simplification scheme that constructs a progressive mesh as a hierarchy of block refinements. We demonstrate the need for an accurate approximation metric during simplification. Our contributions are highlighted in a real-time flyover of a large, rugged terrain. Notably, the use of geomorphs results in visually smooth rendering even at 72 frames/sec on a graphics workstation.

Published in:

Visualization '98. Proceedings

Date of Conference:

24-24 Oct. 1998