Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Energy efficient datapath synthesis using dynamic frequency clocking and multiple voltages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishna, V. ; Center for Microelectron. Res., Univ. of South Florida, Tampa, FL, USA ; Ranganathan, N. ; Vijaykrishnan, N.

In this paper, we propose an energy efficient synthesis technique for datapath circuits. Specifically, we propose a time and resource constrained scheduling algorithm, (DFMVS), which utilizes the concept of Dynamic Frequency Clocking and Multiple Voltage Scaling. In the dynamic frequency scheme, all units are driven by a single clock line which changes at run time depending on the functional unit active at that time. Recently, the use of multiple voltages has been investigated in the context of energy minimization. DFMVS consists of two modules: Dynamic-freq-sched and Modify-sched. Based on the dynamic frequency scheme, Dynamic-freq-sched generates an initial schedule in which the control steps are clocked at different frequencies. Modify-sched incorporates a schedule modifier, that regroups the operations of the initial schedule such that multiple voltages can be used to reduce the energy consumption. The algorithm has been applied to various high level synthesis benchmark circuits under different time and resource constraints. The experimental results show that using three supply saving of 53.5% (with the time constraint of 2.0 times the critical path) is obtained as compared to using a uni-frequency clocking scheme with a single supply voltage

Published in:

VLSI Design, 1999. Proceedings. Twelfth International Conference On

Date of Conference:

7-10 Jan 1999