By Topic

Simultaneous scheduling, binding and floorplanning for interconnect power optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Prabhakaran, P. ; Center for Reliable & High Performance Comput., Illinois Univ., Urbana, IL, USA ; Banerjee, P. ; Crenshaw, J. ; Sarrafzadeh, M.

Interconnect power dissipation is becoming a major component of power consumption in a circuit especially in sub-micron technologies. The energy dissipated by a particular interconnection link is determined by the switching activity on that link and also on its capacitance. The switching activity is determined by the schedule and binding, whereas the capacitance is determined by the floorplan. Scheduling, binding and floorplanning are closely inter-related. A simultaneous scheduling, binding and floorplanning algorithm is presented which attempts to minimize interconnect energy dissipation. In comparison to a traditional approach which separates high-level synthesis from physical design, our algorithm is able to make these stages interact very closely, resulting in solutions with lower power, latency and area. We show that it is possible to reduce the interconnect energy dissipation by upto around 60 percent for high-level synthesis benchmark circuits

Published in:

VLSI Design, 1999. Proceedings. Twelfth International Conference On

Date of Conference:

7-10 Jan 1999