By Topic

Efficient broadcasting in wormhole-routed multicomputers: a network-partitioning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Chee Tseng ; Dept. of Comput. Sci. & Inf., Nat. Central Univ., Chung-Li, Taiwan ; San-Yuan Wang ; Chin-Wen Ho

In this paper, a network-partitioning approach for one-to-all broadcasting on wormhole-routed networks is proposed. To broadcast a message, the scheme works in three phases. First, a number of data-distributing networks (DDNs), which can work independently, are constructed. Then the message is evenly divided into submessages, each being sent to a representative node in one DDN. Second, the submessages are broadcast on the DDNs concurrently. Finally, a number of data-collecting networks (DCNs), which can work independently too, are constructed. Then, concurrently on each DCN, the submessages are collected and combined into the original message. Our approach, especially designed for wormhole-routed networks, is conceptually similar but fundamentally very different from the traditional approach of using multiple edge-disjoint spanning trees in parallel for broadcasting in store-and-forward networks. One interesting issue is on the definition of independent DDNs and DCNs, in the sense of wormhole routing. We show how to apply this approach to tori, meshes, and hypercubes. Thorough analyses and comparisons based on different system parameters and configurations are conducted. The results do confirm the advantage of our scheme, under various system parameters and conditions, over other existing broadcasting algorithms

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:10 ,  Issue: 1 )