By Topic

Adaptation of orienting behavior: from the barn owl to a robotic system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rucci, M. ; Neurosciences Inst., San Diego, CA, USA ; Edelman, G.M. ; Wray, J.

Autonomous robotic systems need to adjust their sensorimotor coordinations so as to maintain good performance in the presence of changes in their sensory and motor characteristics. Biological systems are able to adapt to large variations in their physical and functional properties. In the last decade, the adjustment of orienting behavior has been carefully investigated in the barn owl, a nocturnal predator with highly developed auditory capabilities. We have previously proposed that the development and maintenance of the barn owl's accurate orienting behavior can be explained through a process of learning based on the saliency of sensorimotor events. In this paper we consider the application of a detailed computer model of the principal neural structures involved in the process of spatial localization in the barn owl to the control of the orienting behavior of a robotic system, in the presence of auditory and visual stimulation. The system is composed of a robotic head equipped with two lateral microphones and a camera. We show that the model produces accurate orienting behavior toward both auditory and visual targets and is able to quickly recover good performance after alterations of the sensory inputs and motor outputs. The results illustrate that an architecture specifically designed to account for biological phenomena can produce flexible and robust motor control of a robotic system operating in the real world

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:15 ,  Issue: 1 )