By Topic

Subset selection for improved parameter estimation in on-line identification of a synchronous generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Burth, M. ; Tech. Univ. Berlin, Germany ; Verghese, George C. ; Velez-Reyes, M.

This paper examines subset selection for nonlinear least squares parameter estimation, and applies the methodology to a test system previously studied in the power system literature, involving the on-line identification of a synchronous generator model with many parameters. Subset selection partitions the parameters into well-conditioned and ill-conditioned subsets. We show for the test system that fixing the ill-conditioned parameters to prior estimates (even if these prior estimates are substantially in error), and estimating only the remaining parameters, significantly improves the performance of the estimation algorithm and greatly enhances the quality of the estimated parameters. It is shown that attempts to estimate all of the model parameters, as done in the original work with this test system, can yield extremely unreliable results

Published in:

Power Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )